Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water

نویسندگان

  • Souad A. Elfeky
  • Shymaa Ebrahim Mahmoud
  • Ahmed Fahmy Youssef
چکیده

This study investigated the elimination of Cr(VI) from aqueous solution utilizing a composite from magnetic nanoparticles (Fe3O4) capped with cetyltrimethylammonium bromide (CTAB). The structure of the prepared composite system was examined by Fourier Transform Infra Red Spectroscopy (FTIR), X-ray Diffractometry (XRD), and Transmission Electron Microscopy (TEM). Separation of the Fe3O4/CTAB composite from the wastewater can be achieved by application of an external magnetic field. Factors affecting the Cr(VI) expulsion from wastewater such as pH, competing ions, the dosage level of the nanoparticles, and contact time were studied. The results indicated that the maximum efficiency of the present system for removal of Cr(VI) (95.77%) was in acidic conditions (pH 4), contact time 12 h, and composite dosage of 12 mg/mL. The used Cr(VI) concentration was 100 mg/L. Considering results, the Fe3O4/CTAB system showed a high capability and selectivity for the treatment of water sullied with Cr(VI). This can recede the mutagenic and carcinogenic health risk caused by Cr(VI) water tainting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Hexavalent Chromium from Aqueous Solutions Using Magnetic Nanoparticles Coated with Alumina and Modified by Cetyl Trimethyl Ammonium Bromide

Introduction: The development of an effective method regarding chromium removal from the environment is of great importance. Therefore, the present study aimed to examiner magnetic nanoparticles coated with alumina modified by Cetyl Trimethyl Ammonium Bromide (CTAB) in the removal of Cr6+ through magnetic solid phase extraction method. Materials & Methods: At first, iron oxide nanoparticles ...

متن کامل

Preparation of magnetic chitosan/Fe-Zr nanoparticles for the removal of heavy metals from aqueous solution

Copper and hexavalent chromium are heavy metals that are harmful to human health. Natural adsorbent chitosan, due to its considerable properties such as the presence of functional groups of –NH2 and -OH, non-toxicity, low cost, and biocompatibility, has gained much attention in pollutant removal. Therefore, in the present study, adsorption of chromium (VI) and copper (II) ions was conducted in ...

متن کامل

Hexavalent chromium removal from a simulated wastewater using Fe(II) modified bentonite

Background and Objective: Hexavalent chromium is reported to be highly toxic, mutagenic and carcinogenic; hence treatment of water and wastewater contaminated with this element by low-cost and environmentally friendly methods is of great importance. Therefore the aim of present study was to evaluate the efficiency of Fe(II) modified bentonite for hexavalent chromium removal from a simulated was...

متن کامل

Removal of Diazinon Pesticide Using Amino-silane Modified Magnetite Nanoparticles from Contaminated Water

   A magnetically recoverable adsorbent has been prepared by silica-coated magnetic nanoparticles through an amine functionality (ASMNPs). The ASMNPs were characterized by XRD, TEM, SEM, and FT-IR spectroscopy. It was used as an efficient and economical adsorbent for removing O, O-Diethyl O-[4-methyl-6-(propan-2-yl) pyrimidin-2-yl] phosphorothioate (diazinon) from...

متن کامل

حذف کرومات از محلول های آبی  به وسیله زئولیت اصلاح شده با سورفاکتانت کاتیونی

Backgrounds and Objectives: Hexavalent Chromium is an important contaminant in surface and ground waters and removal from contaminated water and waste water has received interest in recent years. Modified Zeolite with cationic surfactant can remove Cr(VI) from contaminant water. The aim of this research is investigation of Cr (VI) removal from aqueous solutions and its effective parameters by u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017